Saturday, November 24, 2012

TDD in practice

Test driven development is a very popular development process. And I would like to show TDD in practice.

The following problem is going to be solved:
For given a matrix - N * N find all possible ways from top left corner to bottom right. There are possible moves - to right or down.


So, let's create our first test - "PointTest.java" which will test that Point can show its position:

 @Test
 public void shoudReturnHisPostion() {
     assertEquals("(2, 1)", new Point(2, 1).toString());
 }

Now the code is not compiling. We need to create a class Point, add a constructor, like this:
 public class Point {
     private final int x;
     private final int y;

     public Point(int x, int y) {
         this.x = x;
         this.y = y;
     }
 }

Try to run the test. It fails as we need to override a method toString() in a class.
Test passed. Cool.

Second step is creating a SolverTest and the first test is:

 @Test
 public void shouldReturnStartPoint() {
     assertEquals(new Point(0, 0), new Solver().startPoint());
 }

Start point should start with (0, 0) - top left corner.
Create a class Solver and a method startPoint()


 public class Solver {
     private final Point start = new Point(0, 0);
       public Point startPoint() {
         return start;
     }
 }

We also need to add a test and an implementation for finish point:

 @Test
 public void shouldReturnFinishPoint() {
     assertEquals(new Point(2, 2), new Solver(2, 2).finishPoint());
 }

The Solver is slightly changed, we need to set rigth botton corner.

 public class Solver {
     private final int maxX;
     private final int maxY;

     private final Point finish;

     public Solver(int nx, int ny) {
         maxX = nx;
         maxY = ny;

         finish = new Point(maxX, maxY);
     }

     public Point finishPoint() {
        return finish;
     }

  ....
 }

As not all moves are allowed, I need to add a test for checking if the point coordinate is within boundaries.

@Test
 public void shoudReturnFalseIfPointIsNotLegal() {
     assertFalse(new Solver(2, 2).isLegal(new Point(2, 6)));
 }

and implementation:

 public boolean isLegal(Point point) {
     return ((point.getX() >=0)  && (point.getX() <= maxX) && (point.getY() >= 0) && (point.getY() <= maxY));
 }

Next step is to return all legal neighbors for current points. As you remember, moves up and left are not allowed. So write a new test to check this:

 @Test
 public void shoudReturnAllLegalNeighbors() {
     assertEquals("[(2, 2)]", Arrays.toString(new Solver(2, 2).allLegalNeighbors(new Point(2, 1)).toArray()));
 }

And finally, test for checking if the count of path is calculated correctly :

 @Test
 public void shouldReturnCountOfPathFromStartToFinish() {
     assertEquals(6, new Solver(2, 2).getCountPossiblePaths(solver.startPoint(), 0));
 }

Implement getCountPossiblePaths:

 public long getCountPossiblePaths(Point currentPoint, long accu) {
     for (Point point : allLegalNeighbors(currentPoint)) {
         accu = countPossiblePaths(point, accu);
     }
     return accu;
 }
 private long countPossiblePaths(Point point, long accu) {
     if (point.equals(finish)) {
         accu = accu + 1;
     }
     return getCountPossiblePaths(point, accu);
 }
Run the test. Passed.

Great! The task is solved.

The algorithm I used is a simplified version of Breadth-first search.
All source code is avaliable on GitHub (https://github.com/Denyskach/BFS.git).


No comments:

Post a Comment